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ABSTRACT

Consider a finite waiting room shared by several servers. Such
a system may approximate, for instance, a packet switch in a
communications network or a buffer shared by producer-consumer
parallel processes.

It is assumed that a customer is lost if he cannot enter the
waiting room. Furthermore, the waiting room is partitioned into
(L+1) areas, where L is the number of servers: each of the
first L areas is reserved for the exclusive use of one server,
the (L+1)st is common and may be used by all servers. We refer
to this allocation policy as (L+1)-sharing.

The steady-state probabilities are datermined and the performance
of (L+1)-sharing, in terms‘of the probability that a customer is
lost, is compared to three other policies:

-restricted sharing (an upper bound is imposed for the queue
length of each server),

-unrestricted sharing (the (L+1)st area occupies the whole
waiting room),

-no sharing (the (L+1)st area is empty).
It appears very clearly that the last two policies are not the
best; a choice between (L+1)-sharing and restricted sharing

would depend on the objectives of the designer.

Key words:

Exponential queue, finite storage, space allocation policy,
numerical comparisons




In this pdper, we consider the problem of managing a finite
storage space used concurrently by several independent servers.
Systems which present this characteristic appear in computer
related areas.

-Consider a packet-switched communications network such as the
ARPA [8] or CIGALE [10] networks. Each packet switch has a

store of a finite number of buffers, the buffers are shared

by all the output Tlinks.

-Parallel processes linked in producer-consumer pairs communicate
via a buffer where information generated by the producers may

queue until being used by the consumers.

We shall assume that the storage space is made up of M buffers;
there are L output processes. Messages are produced from outside
the system, destined to a specific output process and can fit
exactly in one buffer. We assume furthermore that if an

incoming message cannot enter a free buffer, it is lost.

Arrivals of messages to the jth output process form a Poisson
process with parameter Aj; the time for the jth output process

to service one message is exponential uj; all random variables
are independent. We analyze.the system jn.steady-state:

We shall defer discussion of our assumptions and of their effect

on our conclusions till Section 6.

One has to define a policy to allocate the storage space to
the different output processes. We shall describe first the

simplest two policies.

Unrestricted sharing: a message may join the system whenever




the storage space is not filled; no other restriction is
imposed.

No sharing: the storage space is partitioned into L disjoint
areas; a message may enter the system only if the area
associated to its output process is not filled.

It is well known that these policies may lead to undesirable
behavior for the system. Under unrestricted sharing, one of
the output processes may monopolize most of the storage space,
if it is very slow or highly utilized. On the other hand,
under no sharing, the buffers allocated to an (almost) inactive
output process are wasted: they are not used by their process and
cannot be used by the others.

Two policies for storage allocation have been defined in order
to reduce the impact of such circumstances.

Restricted sharing has been defined by Irland in 1976 [6,7]:

the number of messages in the storage space for the jth output
process can be at most equal to K(<M). Therefore, if kj
denotes the number of messages in queue for the output process j,
the following conditions must be satisfied:

L
vtk
j=1
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and kj < K, for 1sjsL.

Irland [6] determines the steady-state probabilities, proposes
algorithms to evaluate the normalizing constant and the
probability that a message is lost and gives numerical results.
The second policy has been defined by Dijkstra in 1972 [4].

We shall refer to it as the (L+1)-sharing policy: the storage




space is partitioned in (L+1) areas, each of the first L areas
is reserved for one output process, the (L+1)st area is common and
can be used by all the processes. A message may enter the system if
a. the area allocated to its output process is not filled, or
b. that area is filled and the common area is not filled.
Therefore, if N0 denotes the size of the common area and Nj the
size of the area associated to the jth process, the following
conditions must be satisfied:
E
jio Nj = M,

Ky Kpow Ny % Noo F MGy for T §#3°, 028030 4L,
12 12
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The (L+1)-sharing policy is used commonly in the literature on

parallel processes (see for instance Devillers and Louchard
[3]), but to the best of our knowledge, it has not been 1
analyzed yet in the context of stochastic processes.

If L=2, the restricted sharing and (L+1)-sharing policies belong
fo the same class: if N1=N2 and K=N1+N0, they are identical.

If L>2, those two policies are quite different, if one does

not consider the trivial cases, N]=N2=...=NL=K=M/L, N0=0

(no sharing) and Ny=N,=...=N =0, K=Ny=M (unrestricted sharing).
One may roughly rank the four policies, in order of increasing

- degree of sharing, as follows: no sharing, (L+1)-sharing,

restricted sharing and unrestricted sharing.




In Sections 1 to 3, we determine the steady-state probabilities,
which always exist since the storage space is finite and also
the probability that a message is lost, we analyze the special
case L=2 in greater detail.

We then restrict our attention to balanced (L+1)-sharing policies:
policies for which N]=N2=...=NL (=N) and we define an optimal
solution as a pair (NO,N) which minimizes the probability that

a message is lost.

In Section 5 we present some of the numerical results we have
obtained in order to compare the performances of the different
policies. It appears, as was noted already by Irland [6], that
the unrestricted sharing and no sharing policies should be
omitted from further practical consideration. In particular,
the unrestricted sharing policy proves to be extremely unstable
under heavy traffic conditions.

Irland defines the square root rule which is a suboptimal

restricted sharing policy, i.e. K=M//L. It is interesting as

it yields good performances and does not depend on the system
parameters. We shall introduce in Section 4 a similar sub-
optimal balanced (L+1)-sharing policy: N=M/(L+/L), NOEM/(1+/f).
The relations between those four policies (two optimal within
their classes, two suboptimal) are too complex to be summarized
in this introduction.

Finally in Section 6, we present some conclusions and we discuss

the assumptions we have made in our model, the Timitations of

the present approach and the robustness of our conclusions.

S ———




1. Steady-state Probabilities

The state of the system is represented by a vector k=
(k1,k2,...,kL), where kj is the number of messages for the jth
output process (in short: the number of j-messages).

Let S represent the set of all admissible states:

S={k|0sk sN,+N for all 1=ist,

b g Sl
Oskj+kj'SNj+Nj'+N0 for all j#3j', 1sj,.,j'slL;

KL tKL NN BN+ i
OskJ kJ. FJ <NJ NJ NJ N, for all different

0
j’j"j"’lsj’jl’j"sL;

Furthermore, we consider the probabilities

P(k,t] = P[at time t, the system is in state k],
P[k] = 1im P[k,t], and the quantities

ts>o

Djz

Aj/uj, for 1<j<lL.

Since the storage space M is finite, the steady-state
probabilities P[k] always exist. It is possible, although
tedious, to write the system of equilibrium equations which,
together with the normalizing equation, uniquely determine the
P[(k]l]'s. This system, however, is not particularly enlightening
and we shall not use it to determine the steady-state
probabilities but we rather use the local balance

equations.

The local balance equations (see [1]) express the condition that

in steady-state, the rate of entrance into a state of the




system by arrival of a message of any given type is equal to
the rate of exit from the same state by processing a message

of the same type. Formally
prk3)y = w, b
Xj [& ] UJ [B_]

for all j, for all keS such that 5(j)eS, where K(j) is defined

by H
(k). = kn  for at1 iy,

]
x

(3)
Ut R

This system has the solution
K.
J
P ’
1 d

n=arr

PLk] = ¢
J

where C is the normalizing constant defined by
L k.
(1Y) ¢ = ¢ I op. J,
keS =1 9
Let = and "j respectively denote the steady-state probabilities
that a message may not enter the system and that a message with

destination j may not enter the system. One has

(2) E 5ol
2 T = A | ERo L o e
j=1 J j=1 373
g L PER],. i Rl 3 . i ’
vJ '_<-€Sll

where S; = {gsslszNj and there exists Dc{1,2,...,N}

such that I k1 Ry Ni+N0},
ieD ieD
in other words, Sg is the set of states such that all the buffers

allocated to the jth output process and all the common buffers

are filled.
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The throughput T is defined as the expected number of messages

that enter the system per unit of time in steady-state, i.e.

1
To= -7 Xj(1-n

j)' T is clearly given by
3=

—
w
~
-—’
[}
—
s

: Aj)(1-w).

2. Special case: 2 Output Processes

There is in general no closed form expression for the normalizing
constant C, nor for the loss probabilities wj. If L=2 however,

one can easily show that
N,+N. +1 N

+N.+1
(4) C={(1-o])(1-92)(91-02)}-]{(o]-oz)(1-o] byl -0, e )
N,+1 N,+1 N N
* o0, 1 Py 2 (pz 0(1-02)-91 0(1-01))},
N,+N.+1
(5) m=C L o4 ](1-92)-1(1-02 & )-04 ](1-01),
N, +N.+1

(6) 7,=C7! 0, (-0 )T (1-py 10 )20, (10,),
and
d -1
(7) “'1‘(x1+xz) (U]+UZ) ]
N2+N0+| N]+N0+1
et e Tl Sl e
+ {C(r +2 e e e
| 1 P 2 1 Pl

Theorem

For a fixed value of NZ’ i N] is considered as a real number
in [O,M-Nz], then = as a function of N] has a unique minimum
in [o,M-N2]¢

Moreover, if for some value N2=N2°, m is minimum for N]=M-N2,

the same is true for all N23N2°.




Proof: The purely technical proof of this theorem is presented
in Appendix A.

A completely analogous theorem holds for = as a function of N2
for fixed N1 since the expression for =n is symmetrical in the
indexes 1 and 2. These theorems and other technical properties
make it possible to determine numerically the values (No’Nl’NZ)
which minimize = without having to compare all the pbssible
solutions.

We shall not present detailed numerical results for this special

case but we mention that it appears that

(8) Tim (max{Ny,i i, ") > 0.5 if p1#0,s0070,7 ",

M->w

where ﬁi denotes the optimal value for Ni‘ Moreover,

max{No,N1,N2} = N0 if o1pz<1,

=

1 Jif 0192>1, PPy
Ny 1f p10p>1s 0p<oq.

The rate of convergence depends on the ratio ”1/“2‘ If that
ratio is close to 1, the inequality (8) is observed for values
of M as small as 10. In other words, we have an asymptcitic

result which shows that for the optimal solution, one of the

three areas occupies at least one half of the buffer space.

3. General Case: The Loss Probabilities wj

For L>2, no ¢losed form expression has been determined for the

normalizing constant C or the loss probabilities = We

i
rather present in this section the recurrence relations which

may be used to compute those quantities efficiently.

Let us denote by S[K;N1....,NK;N0], the set of admissible




states for a system with K output processes, Nj buffers

reserved te the jth process and N0 common buffers, and by
c[K;N],...,NK;NO], the normalizing constant for this system.
Furthermore, S'[K;N],...,NK;No] is the set of admissible
states such that some messages may not enter (some of the
output processes are "blocked"), S'={LeS[K;...;NO]|

De(1,2,...,K}, £ ky= T N.+N-}.
fei 3 fep 4 U

Also, H[K; N1,...,NK; No] denotes a sum similar to the
expression (1) for C, with S and L replaced respectively by
S' and K;

ey No], j<K, the set of admissible states such

1 5
that no message to the jth output process may enter;

SU[K; N
5t

Gj[K; N1,...,NK;N0], j<K, a sum similar to the expression (1)
for C, with S and L replaced by S" and K respectively.

We obviously have that

O S R ]
= J - 15 Zh 0 .
1rj Glel N],..,,NL; N0] , for O<jsl.
Lemma 1:
N,+N~+1
5 . . =Ty 1*No
CLTs Nys Ngl=(1-p7)7 (1=, )

For K31,
CLK+1; N]’NZ"“’NK’ W; NO]

i = W : i
'(1'0K+]) (]'0K+])CEK3 N]9N29---,NK9 No]

N

0

W i ) . J
+DK+1 izo QK+]C[K, N-||N2,o..,NK, No i].




10

Proof:

The first relation is obvious.

To prove the second relation formally, we observe that

S[K+1; NysNgseo Ny, W3 No]

W-1

ol 9 {(ksi) |keSTKs NysoonsNys NgI3]

i=0

ul

1

nc =

{(k,W+i) |keS[K; N1""’NK; No-i]}]
0

and therefore

C[K+1; N]’NZ""’NK’ W; NO]
W-1 . , K k.
= I p;+] T i p.J
i=0 keS[K;...3NgT =1
N
0 K k.
+ I pw".'i z J.

T ps
120 K*1 kesiK;...sNg-11 g=13

Informally stated, if kK+]<w, the other output processes are
allowed to use all the N0 common buffers, if HskK+]sH+No, the

other processaes are allowed to use (NO'kK+1+w) common buffers.

Lemma 2:

N.+N
. . S 1M
H[], N-I, NoJ p-| b ]
for K21,

‘ ‘N T= ol W :
H[K+] ’N1 90 0 ,NK,N,NO]-(1-9K+]) (]‘DK+1)H[K,N1 9% v e ,NK,NOJ

i . : :
OK+]H[K,N] 9 ¢ o ’NK’N0‘1]
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Proof:

The first relation is obvious. One proves the second one
informally as follows. The first term on the right-hand side
corresponds to the (K+1)st output process using less than W
buffers, all the N0 common buffers being used, thereby one of
the other processes being blocked. The second term corresponds
to the (K+1)st output process using (W+i) buffers, OsisNg, all
the (No-i) remaining common buffers being used and at least
one of the other processes being blocked. The last term
corresponds to the (K+1)st process using all the N, common
buffers, none of the other processes being blocked.

Lemma 3:
N.+N
2 % - 170
G][], N]9 No]'D] s
for jx2,
Gj[j; N])-~-9Nj_]’ w; No]
N+N0
3pj CEJ-]; N],---ij_l; 0]

0 4
W i ¢ . o3
+Dj Zo Dj H[j‘19 N];---ij_]a NO 1]:

for K2j,

Gj[K+1; N]""’NK’ W; NO]

r -1 W . .
'(1'DK+]) (1‘DK+])Gj[Ka N]""’NK’ No]
N
LN e e N3 No-i]
9K+] i=0 0K+] j 3  ERERELIE 0 ‘
Proof:

The first relation is obvious. The second can be informally

proved as follows: either the jth process uses all of its
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allocated buffers and all the common buffers, the other
processes may use any number of their allocated buffers, or
the jth process uses all of its allocated buffers but not all
of the common buffers and the other processes use the
remaining common buffers.

The third relation is proved as follows: either the (K+1)st
process does not use all of its allocated buffers, the other
processes use N0 common buffers and the jth process is
blocked or the (K+1)st process uses at least all of its
allocated buffers, the other processes use the remaining

common buffers and the jth process is blocked.

Remark: To determine C[K+T;...;N0], using Lemma 1, one needs
to determine C[K;...30], C[K;...31], ..., C[K;...;No] and

similarly for H and G.

Using those three Lemmas, it is possible to design an algorithm

for the determination of the probabilities xS and therefore

tne probability = and the throughput T. The algorithm is
presented in Appendix B. We did not try to identify the
largest problem which the resulting program can handle, but

a system with M=100, L=20, N0=20, N]=N2=...=NL=4 was solved in
about 0.5 seconds of CPU time.

4. Balanced Optimum and Square Root Policies

Consider the problem of determining a set of parameters

L
(NO’NI""’NL)( 7 NJ=M) which maximize the throughput T or,
j=0
equivalently, minimize the loss probability =. Without

further analysis of r, this can be done only by evaluating =

- e oo a - ‘-‘ o e .‘ ‘e ey v e gt e - “ i $at / ‘
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for each of the (M;L) possible values for (NO’N1"“’NL)’
Such small systems as M=20, L=5 begin to tax the computer, even
if the algorithm avoids repetition of lengthy computations.

Therefore, we restrict our attention to suboptimal policies.

A. Optimal balanced (L+1)-sharing policy

An optimal balanced policy is represented by (NO,N) and is the
set of parameters (NO’Nl”"’NL) which minimize the loss
probability m subject to the following constraints:

N1=N2=...=NL=N,

N0+LN=M.
The determination of (NO,N) requires the evaluation of = for

LM/Lj+1 systems.

B. Square-root (L+1)-sharing policy

The optimal balanced policy depends on the system parameters and
requires readjustment as traffic characteristics change. As

this may prove difficult to do in practice, one would set

(NO,N) to a fixed value which yields a reasonable loss probability
m over a large range of parameter values. We find such a pair
(NO,N) by using an argument similar to that given by Irland [6].
First we observe that losses are usually insignificant for

small values of the pj'S. Therefore, we shall analyze the

optimal balanced policy in the special case where p1=pz=...=pL=1.

For L=2, one can show from Equations (2) and (4) to (6), by

using 1'Hospital's rule, that

. 2(M-N+]
5 M*TT(M*Z2)-2N(N+T) °
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If N can take any real value in [0 ML']], v is minimum for

N = MH1-/(M+¥T)(M+2)/2 ,
which is approximately equal to

e
2+/2

so that NyiM-2N= .
1+/2

For general L22, we define the square-root (L+1)-sharing policy

N=N1=...=NL=L M -ior ( le,
L+/C L+/T

whichever is best in the case pj=1, 1<j<l;

as follows:

Noy=M-LN20.

In the next section, we examine the overall quality of this
policy. It seems to be close to the optimal policy if pj=1,
1<jsL, although we do not have a formal proof of this assertion.
Let us mention that we have numerically determined the optimal

solution for the following systems:

L
M

3,4,...,20;
20,30,...5100;

Aj = My T1<jsL.

In three fourth of the cases, the square-root policy is optimal

and in all the other cases, the optimal value for N is

<)
L+v/T

and the value of the loss probability for the square-root policy

is very close to the minimum.
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Remark: Irland [6] determines a square-root restricted sharing

policy which is close to the optimal for pj=], 1<js<l:

"

M
9) K = — .,
) /T

For the square-root (L+1)-sharing policy, the maximum number of

buffers that any output process may use is

Mo, _M M

N + NO = =Tl -
L+/C 1+/L /T

and is equal (see (9)) to the maximum number of buffers under
the square-root restricted sharing policy. Of course, under
restricted sharing, two or more output processes may use

simultaneously M//L buffers each, while this is not true for

(L+1)-sharing.

5. Numerical Comparisons

We now present some numerical results (see also Figures 1 to 14).
Qur main objective is to compare the different policies we

have defined. This leaves several interesting questions
unanswered, such as those related to the asymptotic behavior
for M and Loe.

As six policies are involved, the figures tend to get confused.
To alleviate this problem somewhat, we adopt the following

conventions.

Conventions:
i. The loss probabilities are presented on a logarithmic scale.

ii. Results for the unrestricted sharing policy are represented

by a uon’
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-results for the no sharing policy are represented by a "+",
-results for all the other policies are represented by a
continuous line, marked by a.

"1" for the optimal balanced (L+1)-sharing policy,

"2" for the square root (L+1)-sharing policy,

"3" for the optimal restricted sharing policy,

"4" for the square root restricted sharing policy.
Moreover, we assume in all of the examples that the output
processes have the same speed, chosen as the unit: u.=1, 1<js<lL.

J
i Hence, pj=kj, 1<jsl.

A. Balanced load (fiqures 1 and 2)

Consider first the case where all the input rates are equal:

x]=A2=...=AL. Since the number of accessible buffers is the

same for each output 1ink, the loss probabilities are equal:

FET 5 1<j<sL. Figures 1 and 2 present the throughput and the

loss probability for L=3, M=10 and for different values for

T—

the common traffic coefficient oq-
For small values of R (p1<1), the throughput for the no
sharing policy is substantially smaller than for the other

policies. This property seems rather general since we have

systematically observed it (see f{gures 3, 7, 11) whenever

pj<1, Tsjst.

For large values of 1 (p]>]), the unrestricted sharing policy
offers the smallest throughput, followed by the square root
restricted sharing policy. This suggests that the unrestricted
sharing policy is the most sensitive to an increase of congestion

affecting uniformly all the output processes; and that the

square root restricted sharing is more sensitive to such a
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phenomenon than the other controlled sharing policies.

B. Unbalanced load (figures 3 to 10)

For the next example, L=3 and M=10 (figures 3 to 6) and 20
(figures 7 to 10). Only P varies, the other traffic
coefficients remain constant (pz=.5, p3=.6).

Notice first that for p]>], the throughput for the unrestricted
sharing policy decreases as Py increases. This property seems
to be a characteristic of the situations where the pj'S are not
all equal, a justification has been proposed by Irland [6].

For p]<1, the global loss probabilities = for the optimal
balanced (L+1)-sharing policy and the optimal restricted sharing

policy are nearly equal (see figures 4 and 8); a similar property

holds for the corresponding square-root policies. Differences
appear for 91>1 (see figures 3 and 7); the restricted sharing
policies have a larger throughput than the (L+1)-sharing
policies. However, those differences get smaller when M
increases.

In this case, the loss probabilities Ty are not equal; figures
5, 6, 9 and 10 present ™ and Toe Observe that for all the
controlled sharing policies, L varies on the interval 059151
much less than T especially so for the square root policies;
again, this property is general. It indicates that if the
traffic is stable for some output links but not for others,
both the restricted sharing and the (L+1)-sharing policies
reduce the effect of such traffic variations on the stable output
processes. Moreover, one observes that for those policies,

eSO 1 v

R e 1E Bytiy

.. s .0 .’
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C. Highly unbalanced load (fiqures 11 to 14)

For our last example, we consider a situation where most of the
output processes have a high traffic coefficient: L=4, M=20,
°2='7’ p3=.8, p4=.9, °q varies.

It appears first (see figure 11) that for p1>1, the square root
restricted sharing policy does not perform as well as in the
preceding example.

Most interesting is the observation one can make from figures 12
to 14 (p1s1):

-the global loss probability, m, takes very similar values for
all the controlled sharing policies,

-for small values of P1s ™y is noticeably smaller under (L+1)-
sharing than under restricted sharing,

-there is less difference among those policies for the other loss
probabilities.

In other words, if most of the output processes are heavily
loaded and a few are lightly loaded, the latter will receive

more favorable treatment under (L+1)-sharing than under restricted
sharing with no large increase of loss probability for the other
processes nor the system as a whole.

Again, as noted earlier, those differences decrease for larger M.

6. Conclusions and Comments

The no sharing and unrestricted sharing policies prove to be

completely inadequate, the former because it performs poorly
when all pj'S are smaller than 1 (or slightly larger), which
seems a frequently prevailing condition, the latter because it

presents no robustness against an increase of traffic for some
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or all of the output processes.

If the objective is to minimize the global loss probability =,

the optimal restricted sharing policy proves to be best by a

small margin in the majority of cases: we have found very few
(usually unrealistic) situations where the optimal balanced
(L+1)-sharing policy is better.

If the objective is to have a small global loss probability =«

and a small Toss probability “j for 1ightly loaded output
processes, then there is no uniformly best policy. In cases
similar to example B, restricted sharing gives best results,

for situations similar to example C, it is (L+1)-sharing.

The square root policies have the advantage, as we mentioned
earlier, of being independent of the parameters. They perform

well in general and there does not seem to be any general answer to
the question of which of the two square root policies minimizes the
global loss probability =. However the square root (L+1)-sharing
policy may prove to be preferable if one takes into consideration the
risk of coalitions (defined informally below): coalitions are
impossible under square root (L+1)-sharing if M>L+YL, but may

occur under square root restricted sharing if L>3. A coalition
occurs when the output processes have a behavior which allows a
subset of them to always use all of the M buffers, preventing

the other processes from ever getting any message. This is
reflected to some degree by the values of ™ for small values of

pq in example C (figure 13).

We now comment on some of the assumptions we have made in defining

our model.
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Firstly, we have assumed that arrivals form a Poisson process
and services are exponential. To the best of our knowledge,

only Fisher [5] considers a general service time distribution,
L=2. Fisher proposes an approximation for the steady-state 4

probability distribution under unrestricted sharing and makes

comparisons with the no sharing policy in the exponential case.
Extending the analysis of our model to general service time and/or
interarrival time distributions seems to be a major task; before
engaging in it, some measurement of the robustness (or lack of
robustness) of the results for the Markovian case might be
appropriate.

Secondly, we have considered the system in stationary state.

This may not be appropriate since the conditions are likely to
change over time for the applications described in the intro-
duction. However, the results we have obtained suggest that

the square root policies are generally close to the optimal and

should be good ones provided that abrupt changes do not occur
too frequently, especially if one takes into consideration the
costs of adjusting the allocation policy to a changing

environment.

Two of our assumptions have a crucial influence on our analysis.
We have assumed that a message that cannot join the system is
lost. This may be legitimate for a packet-switch communications
network: such a message would either be resubmitted later (and
appear to be a new one) or transmitted through another path in

the network (and be effectively lost for the system under

consideration). For producer-consumer parallel processes, this
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assumption is at best an approximation. A producer that cannot
find a buffer to enter a message will wait until it gets a free
buffer. This should affect the steady-state probabilities but
not necessarily our qualitative comparisons of the different
policies.

We have also assumed that all random variables are independent.
This affects our qualitative conclusions. For instance, this
assumption reduces the risk of coalition. It is possible to

define arrival processes which are not independent, such that

the square root restricted sharing policy and even the optimal
restricted sharing policy (based on the Markovian assumption)
perform disastrously: coalitions are certain to occur and the
output process with the smallest traffic coefficient never gets

any messages.

Furthermore, situations, not covered by our numerical analysis,
are worthy of future investigation. For instance, would our
qualitative conclusions hold if the service rates uj's were

not all equal? More importantly perhaps, one should try to get
asymptotic results for large values of M and L; intuitively, it
seems that for fixed L‘and increasing M, the differences between
policies would reduce. This is supported by our numerical

results.

Finally, one may consider that the messages have not all the
same importance and, for instance, assign costs for loss of a
message, which are different according to the destination. The
function to minimize in this case is the expected cost per unit

of time:




|
|
{
|

where Y5 is the cost for loss of a message with destination

o

In [S3] we analyze the no sharing policy in a small system:
L=2, exponential services. For general L and (L+1)-sharing
policy, I can be determined as easily as = (Section 3). If
costs wre different, one cannot restrict the search for an
optimum among the balanced policies; we have already indicated
in Section 4 that an exhaustive comparison of all the possible
values for (NO’Nl""’NL) is prohibitively costly except for
very small systems. Therefore, [ would have to be analyzed

further in order to determine an efficient algorithm.




Appendix A

1. Let L=2. Consider N2 fixed and let N] take any real value
in [0, M-Nz]. m as a function of N1 has a unique minimum in
[o, M-Nz].

Proof:

As Ny#N +Nj=M, the expression (7) for = can be written as

"=Y+691(N]; st M)/gz(N1; Nz, M)
where
Y=]-(A]+A2)-1(u]+u2) is independent of N],

es=(x]+>x2)'1 is positive and independent of N1,

M-N,+1 M-N

)
g]=U](]'D])(]‘92 L )+u2(1'02)(1'91

N

& M-Np+T MaNg+]
9,=(pq=pp) " {(pq=py) (1-p, -0 )

N1+] M-N]+] M-N2+1 N2+1
) Py (1-92)-01 Py (1-0,)1.

+o
Replacing N] by x, it is easy to check that
n'(x) = (hy(x))%n(x)

where h](x) js a function of no interest to us and h(x) is

given by
_-l M‘N2+]
(A1) h(x)=(oq=pp)  "{-uy(T-p;) (0 =py)e, log o,
N,+1 M-N,+1
'U](]‘p])zpz - 9] 2 109 92
M-N,+1

'Uz(]‘pz)(p]‘pz)(]'O] = )109 02

+1
P

+U](1’D])(]‘02)9]x ZM-X+]1°g 92

M-N,+1
“Luq (1=09) (=0 "X D40, (120, (10 2 )]

(1-p2)p]X+](1ogp]-10992)}.
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The derivative of h(x) is
h'(x)"9]x+](10991'10992)(91'92)-] x

M-x+1

{U1(]'92)(]‘92 )(]‘91)10991

2 M-N2+1
+u,y(1-0,)" (10,4 )10go,}
and is positive since (1-0%)10gp<0, a>0; hence h(x) is
increasing and it is trivial to conclude that
m is minimum for N,=0 if h{(0):0,
v has a unique minimum in (O, M-Nz) if h(0)<0<h(M-N2),
T is minimum for N]=M-N2 if h(M-NZ)so.

9. If h(M-NZO)so, then h(M-N,)<0 for all NZzNZO.

Proof:

From (A.1), h(M-N2)50 if and only if

N, +1 M-N,+1

(A.2) uy(1-07) (10, 2 )(oq-0,)7 oy 2 [(1-p1)T09p,-(1-p,)T0g0,]
M-N2+] _-I
“uy(1-0,) (1-0, )(pq-p5) [(pq-p,)T090,+
M-N,+1

(1-6p)e; ° (1ogeq-Togs,)]s0.

As (1-9)']1090 is an increasing function of p, it is easy to
verify that the coefficient of My in (A.2) is negative.

The coefficient of (-uz) is negative; it can be written as
M-N,+1

(1-07) "1 (1-p, 2

)g(NZ) where
9(x)=(1-5,)(1=5,) (67-0,) "' [(pq=p,) 1085, +

(1-6,)07" %" (10goy-10g0,) 1.
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M-x+1

As g'(x)s'(]'91)(]'92)2(01'92)-191 1099](10991'10992) is

positive and g(M)=(]-p])2(]-02)2(01'02)-1[(1-91)-10110991-
(l-pz)']pzlogpz] is negative since (1-p)']p1ogp is a decreasing
function of p, g(x) is negative for all x<M.

Hence, h(M-NZ)sO if and only if u]/uzzb(Nz). where

b(x)=0(1-01) (1-5," )0 M X (151 )1090,- (1-5) 1090, 137

f(l-pz)(l-p1M‘X+])[(o]-02)10902+(1-92)91M'X+](10901-10902)]}20

After tedious algebraic manipulations, one can write b'(x) as

b'(x)=p]M-X+]

((1-09)*(1-0,)%(07-0,) "' [(1-07) " 10g0, -
(1-05) 11090, 137 %= (1) (1-0,**1) (157 ) T0gp g (2x-H-1)
~(1=7) (1= )0 X T (125,) 10509 (x))

which is clearly negative for all xsM. Therefore, b(x) is

decreasing and b(N20)5u1/u2 implies b(Ny)su /u, for all NZzNZO,

which completes the proof.




Appendix B

Denote by x an infinite sequence (xo,x],xz,...) and let the

operator * denote the convolution:

i
(x*y)y = iio Xy ¥y.4 0sd.

The Lemmas 1 to 3 (Section 3) can be written as follows, using

NK+1 instead of W. To simplify notations, we use CK(NO)

instead of CLK; Ny,Np,...uNys No] and we let C  represent the
sequence (CK(O), CK(I), ...), similarly for H and G. Moreover,

By = 5 ogs mge vaale. Balt

and we define the sequence lj as follows:
n

L e o7 lsist, Osn.
Lemma 1'

Cplgl = Xy (Kyely) BB,

N
= K
QK T lK(NK-]) E_K_1 + DK (gK*QK_]) 2<K<L.

Lemma 2'

N.+N

= 1
H](No) i D'l

0 0<N

0)

N
) 5 K
Hy = Ye(N=1) By g+ oy Ty Hy q)

N K-1
K
* oy oo T Byl Th, eskel.

e e o
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Lemma 3' .
By 1 = By
Ny
S,k = ek (Cy1(0)-Hy 1(0))ey
Ny
+ DK (QK*ﬂK_1)s ZSKSL’
N

= - K j
S,k = Yk(Ng-1) Gy g * o (og*Gy q)s  Tsi<Ksl.
To compute the first N components of y=x*p where g=(1,p,02,...),
we use the following algorithm (Buzen [2]):

CONVOL (y’x:psN);

real array y,x; real p; integer N;

begin integer k;
y(0):=x(0);
for k:=1 step 1 until N do
y(k):=py(k=1)+x(k);

end;

This algorithm requires N multiplications and N additions.

Therefore, to determine C and Gj L> 1<j<L, one has to perform

NO(L-I)(L+7)+M+2L additions
and NO(L-I)(3L/2+5)+M+L multiplications.
(Details are indicated in Table 1). Moreover, memory require-

ments are not very large if one discards intermediate results

when they are no longer needed.




28
additions multiplications
¢y (g] and !,) N1+No+] N1+N0
CK (2sKsL)
(o and ve) N #Ng* NN
convolution "0 N0
total NK+3NO+1 NK+4N0
Hy (2<K<L)
convolution No NO
last term No
total 3N0 4N0
GK,K (2<KslL) N0+l N0+1
G‘j x (2sKsL)
>™ convolution N0 N0
total 2N0 3N0
total all j 2(K-1)N0 3(K-1)N0
H] and G],1 0 0
Table 1
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